Visible photooxidation of dibenzothiophenes sensitized by 2-(4-methoxyphenyl)-4, 6-diphenylpyrylium: an electron transfer mechanism without involvement of superoxide.
نویسندگان
چکیده
We report here on a new electron-transfer mechanism for visible-light photooxidation of sulfides in which no superoxide ion is involved. Visible-light irradiation of 2-(4-methoxyphenyl)-4, 6-diphenylpyrylium tetrafluoroborate (MOPDPP(+)BF(4)(-)) in an O(2)-saturated acetonitrile solution containing dibenzothiophene (DBT) results in nearly 100% conversion to oxygenated products, DBT sulfoxide and sulfone. The photooxidation of DBT is initiated by a photoinduced electron-transfer process, where the excited MOPDPP(+) traps an electron from the ground-state DBT to form MOPDPP(*) and DBT radical cation. Such a mechanism is consistent with the studies of laser flash photolysis, electron spin resonance, and fluorescence quenching of the irradiated system. The photogenerated DBT radical cation undergoes a coupling reaction with O(2) to produce the intermediate responsible for the formation of the oxygenated products. The presence of O(2) has no effect on the decay kinetics of the transient absorption of MOPDPP(*), indicating that no redox reaction occurs between MOPDPP(*) and O(2), and thus no superoxide ion (O(2)(*-)) is formed. Moreover, the ESR signal of MOPDPP(*) was significantly enhanced in the presence of O(2), consistent with the assumption that the photogenerated DBT radical cation couples with O(2) to form the oxygen-adduct, which is subject to further reactions (Scheme 3) leading to the final oxygenated products. Similar results have been obtained when using 10-methylacridine hexafluorophosphate (AcrH(+)PF(6)(-), which has similar reduction potential in the ground state as MOPDPP(+)) as the sensitizer. This finding provides a possibility for the photooxidation of sulfides with dioxygen utilizing visible light (solar energy) and is also of significance in clarification of the reaction mechanism.
منابع مشابه
Singlet Oxygen and Electron-Transfer Mechanisms
The 9,lO-dicyanoanthracene-sensitized photooxidation of 2,3-diphenyl1,4-dioxene in CHICN produces ethylene glycol dibenzoate and small amounts of epoxide. Most of the diester is formed from singlet oxygen via the dioxetane, and only a small amount by electron transfer. The epoxide is a primary electron-transfer product. Various mechanistic possibilites for the electron-transfer process are cons...
متن کاملPhotooxidation of dibenzothiophene and 4,6-dimethyldibenzothiophene sensitized by N-methylquinolinium tetrafluoborate: mechanism and intermediates investigation.
Photooxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) sensitized by N-methylquinolinium tetrafluoborate (NMQ(+)BF4-) has been investigated in O2-saturated acetonitrile solutions. Nearly 100% oxidation of DBT and DMDBT was observed, and the oxidized products are predominantly composed of sulfoxides and sulfones, which are formed via photoinduced electron transfer (ET)...
متن کاملPorphycene-mediated photooxidation of benzylamines by visible light.
A variety of primary and secondary benzylic amines were oxidized efficiently to N-benzylidenebenzylamines and imines, respectively, using 2,7,12,17-tetrapropylporphycene (H(2)TPrPc) photocatalyst and blue light emitting diodes (LEDs). The photooxidation of 4-methoxybenzylamine in the presence of H(2)TPrPc and its tin(IV) complex Sn(TPrPc)Cl(2) was studied in detail in order to show that operati...
متن کاملSelf sensitized photooxidation of N-methyl phenothiazine: acidity control of the competition between electron and energy transfer mechanisms.
The reaction pathways following electronic excitation of 10-methyl phenothiazine (MPS) in the presence of oxygen have been investigated as a contribution to establish the mechanisms involved in the phototoxic reactions related to phenothiazine drugs. In the context of previously published results, the pathways of oxidation via the radical cation and/or by reactive oxygen species, such as single...
متن کاملPhotocatalytic oxidation of an organophosphorus simulant of chemical warfare agent by modified TiO2 nanophotocatalysts
TiO2 nanoparticles, as a photocatalyst for oxidation of dimethyl methylphosphonate (DMMP) as an organophosphorus simulant of chemical warfare agent, were prepared by using sol-gel method. The prepared nanoparticles were then modified with transition metals in order to decrease the electron-hole recombination and increase the photocatalytic activity. Transition metal ions including Pt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 6 شماره
صفحات -
تاریخ انتشار 2006